Multi-output learning via spectral filtering
نویسندگان
چکیده
منابع مشابه
Vector Field Learning via Spectral Filtering
In this paper we present and study a new class of regularized kernel methods for learning vector fields, which are based on filtering the spectrum of the kernel matrix. These methods include Tikhonov regularization as a special case, as well as interesting alternatives such as vector valued extensions of L2-Boosting. Our theoretical and experimental analysis shows that spectral filters that yie...
متن کاملLearning Linear Dynamical Systems via Spectral Filtering
We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm wi...
متن کاملKernel Mean Estimation via Spectral Filtering
The problem of estimating the kernel mean in a reproducing kernel Hilbert space (RKHS) is central to kernel methods in that it is used by classical approaches (e.g., when centering a kernel PCA matrix), and it also forms the core inference step of modern kernel methods (e.g., kernel-based non-parametric tests) that rely on embedding probability distributions in RKHSs. Previous work [1] has show...
متن کاملOn the Multi-output Filtering Model and Its Applications
In this paper, we propose a novel technique, called multi-output filtering model, to study the non-randomness property of a cryptographic algorithm such as message authentication codes and block ciphers. A multi-output filtering model consists of a linear feedback shift register (LFSR) and a multi-output filtering function. Our contribution in this paper is twofold. First, we propose an attack ...
متن کاملLearning via Inference over Structurally Constrained Output
We experimentally analyze learning structured output in a discriminative framework where values of the output variables are estimated by local classifiers. In this framework, complex dependencies among the output variables are captured by constraints that dictate how global labels can be inferred. We compare two strategies, learning plus inference and inference based training, by observing thei...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Machine Learning
سال: 2012
ISSN: 0885-6125,1573-0565
DOI: 10.1007/s10994-012-5282-y