Multi-output learning via spectral filtering

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Vector Field Learning via Spectral Filtering

In this paper we present and study a new class of regularized kernel methods for learning vector fields, which are based on filtering the spectrum of the kernel matrix. These methods include Tikhonov regularization as a special case, as well as interesting alternatives such as vector valued extensions of L2-Boosting. Our theoretical and experimental analysis shows that spectral filters that yie...

متن کامل

Learning Linear Dynamical Systems via Spectral Filtering

We present an efficient and practical algorithm for the online prediction of discrete-time linear dynamical systems with a symmetric transition matrix. We circumvent the non-convex optimization problem using improper learning: carefully overparameterize the class of LDSs by a polylogarithmic factor, in exchange for convexity of the loss functions. From this arises a polynomial-time algorithm wi...

متن کامل

Kernel Mean Estimation via Spectral Filtering

The problem of estimating the kernel mean in a reproducing kernel Hilbert space (RKHS) is central to kernel methods in that it is used by classical approaches (e.g., when centering a kernel PCA matrix), and it also forms the core inference step of modern kernel methods (e.g., kernel-based non-parametric tests) that rely on embedding probability distributions in RKHSs. Previous work [1] has show...

متن کامل

On the Multi-output Filtering Model and Its Applications

In this paper, we propose a novel technique, called multi-output filtering model, to study the non-randomness property of a cryptographic algorithm such as message authentication codes and block ciphers. A multi-output filtering model consists of a linear feedback shift register (LFSR) and a multi-output filtering function. Our contribution in this paper is twofold. First, we propose an attack ...

متن کامل

Learning via Inference over Structurally Constrained Output

We experimentally analyze learning structured output in a discriminative framework where values of the output variables are estimated by local classifiers. In this framework, complex dependencies among the output variables are captured by constraints that dictate how global labels can be inferred. We compare two strategies, learning plus inference and inference based training, by observing thei...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Machine Learning

سال: 2012

ISSN: 0885-6125,1573-0565

DOI: 10.1007/s10994-012-5282-y